Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 379(6636): 978-981, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893246

RESUMO

Ocean manipulation to mitigate climate change may harm deep-sea ecosystems.


Assuntos
Mudança Climática , Ecossistema , Oceanos e Mares
2.
Biomolecules ; 12(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35053226

RESUMO

This study investigated the ecotoxicological effects of differently sized (4-6 µm and 20-25 µm) low-density polyethylene (LDPE) microplastics (MPs), with and without adsorbed benzo-a-pyrene (BaP), in clam Scrobicularia plana. Biomarkers of oxidative stress (superoxide dismutase-SOD; catalase-CAT), biotransformation (glutathione-S-transferases-GST), oxidative damage (lipid peroxidation-LPO) and neurotoxicity (acetylcholinesterase-AChE) were analysed in gills and digestive glands at different time intervals for a total of 14 days of exposure. In order to have a better impact perspective of these contaminants, an integrated biomarker response index (IBR) and Health Index were applied. Biomarker alterations are apparently more related to smaller sized (4-6 µm) MPs in gills and to virgin LDPE MPs in the digestive gland according to IBR results, while the digestive gland was more affected by these MPs according to the health index.


Assuntos
Benzo(a)pireno/toxicidade , Bivalves/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais
5.
Trends Ecol Evol ; 35(10): 853-857, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32741648

RESUMO

Scientific misconceptions are likely leading to miscalculations of the environmental impacts of deep-seabed mining. These result from underestimating mining footprints relative to habitats targeted and poor understanding of the sensitivity, biodiversity, and dynamics of deep-sea ecosystems. Addressing these misconceptions and knowledge gaps is needed for effective management of deep-seabed mining.


Assuntos
Ecossistema , Mineração , Biodiversidade
6.
Sci Total Environ ; 733: 139102, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446057

RESUMO

Microplastics (MPs) lipophilic nature and widespread distribution raises concerns due to their increasing presence in the marine environment and their ability to adsorb organic contaminants, as being potential vehicles for transport and potential source of accumulation of organic contaminants by marine organisms. The organic UV-filter, oxybenzone (BP-3) is a constituent of sunscreens and personal care products, entering the marine environment either by direct contact with swimmers or by wastewater effluents. In this study the ecotoxicological effects of exposure to low-density polyethylene (LDPE) microplastics with and without adsorbed BP-3 were investigated in the peppery furrow shell clam, Scrobicularia plana. LDPE microplastics with a size range of 11-13 µm were previously contaminated with an environmentally relevant concentration of BP-3 (82 ng g-1). S. plana individuals were exposed to a concentration of 1 mg L-1 of microplastics with and without BP-3 adsorbed in a water-sediment exposure system for 14 days. Clams were sampled at the beginning of the experiment and after 3, 7, and 14 days of exposure. Multiple biomarkers were analysed to investigate the effect of exposure in different clam tissues, gills, digestive gland, and haemolymph. Antioxidant (superoxide dismutase, catalase, glutathione peroxidase) and biotransformation (glutathione-S-transferases) enzyme activities, oxidative damage (lipid peroxidation), genotoxicity (single and double strand DNA breaks), and neurotoxicity (acetylcholinesterase activity) were assessed along with two biomarker indexes to assess the overall health status. Results indicate that after 7 days of exposure MPs with adsorbed BP-3 induced oxidative stress and damage, when compared to exposure to virgin MPs and control treatments. Neurotoxic effects were also noted in MPs with adsorbed BP-3 after 14 days exposure, while some evidence points to increased genotoxicity with exposure time. Overall results indicate that gills were more affected by exposure to microplastics than digestive gland and that biomarkers alterations are apparently more related to the toxicity of BP-3 adsorbed than virgin MPs alone.


Assuntos
Bivalves , Poluentes Químicos da Água/análise , Animais , Benzofenonas , Biomarcadores , Microplásticos , Estresse Oxidativo , Plásticos
7.
Environ Sci Technol ; 53(23): 13981-13991, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31638389

RESUMO

The interest in deep-sea mining increased along with the environmental concerns of these activities to the deep-sea fauna. The discovery of optimal biomarkers of deep-sea mining activities in deep-sea species is a crucial step toward the supply of important ecological information for environmental impact assessment. In this study, an in situ copper exposure experiment was performed on deep-sea scavenging amphipods. Abyssorchomene distinctus individuals were selected among all the exposed amphipods for molecular characterization. Copper concentration within the gut was assessed, followed by a tandem mass tag-based coupled with two-dimensional liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) applied to identify and quantify the protein expression changes after 48 h of exposure. 2937 proteins were identified and annotated, and 1918 proteins among all identified proteins were assigned by at least two nonambiguous peptides. The screening process was performed based on the differences in protein abundance and the specific correlation between the proteins and copper in previous studies. These differentially produced proteins include Na+/K+ ATPase, cuticle, chitinase, and proteins with unknown function. Their abundances showed correlation with copper and had high sensitivity to indicate the copper level, being here proposed as biomarker candidates for deep-sea mining activities in the future. This is a key step in the development of environmental impact assessment of deep-sea mining activities integrating ecotoxicological data.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Cromatografia Líquida , Cobre , Proteômica , Espectrometria de Massas em Tandem
8.
Ecotoxicology ; 28(3): 294-301, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30863973

RESUMO

The increasing use of rare earth elements (REEs) in diverse technological applications has augmented the demand and exploitation of these worldwide, leading to a higher input of REEs + Yttrium (Y) in the marine environment. The present study investigated the ecotoxicity of Lanthanum (La) and Y to Mytilus galloprovincialis developing embryos and juveniles. This was achieved by quantifying the embryogenesis success after 48 h, and survival of juveniles after 96 h of exposure to different concentrations of La and Y. Results show that both La and Y are more toxic to developing embryos and larvae than to juveniles of M. galloprovincialis. Predicted no-effect concentration (PNEC) values were also derived for the embryo development as a preliminary approach to assess the environmental risk for these compounds to marine organisms. Results revealed that La is more toxic than Y. The high sensitivity of the early developmental stages to these compounds highlight the relevance of including these stages when evaluating the toxicity of chemicals where little information is available. Although older life stages may be more tolerant to toxicants, the population survival will be compromised if new recruits are not viable, with implications to the whole ecosystem health and functioning of the impacted area. Information on the ecotoxicity of chemicals with expanded technological use and that may be released during deep-sea mining activities is urgent in order to help estimate environmental impacts.


Assuntos
Metais Terras Raras/toxicidade , Mytilus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Ecotoxicologia , Desenvolvimento Embrionário/efeitos dos fármacos , Meio Ambiente , Lantânio/toxicidade , Larva/efeitos dos fármacos , Metais Terras Raras/metabolismo , Oceanos e Mares , Alimentos Marinhos/análise , Poluentes Químicos da Água/metabolismo , Ítrio/toxicidade
9.
Aquat Toxicol ; 203: 117-129, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30119036

RESUMO

Proteomic analysis was performed to compare the effects of Arsenic (As), seawater acidification (Low pH) and the combination of both stressors (Low pH + As) on Crassostrea angulata and Crassostrea gigas juveniles in the context of global environmental change. This study aimed to elucidate if two closely related Crassostrea species respond similarly to these environmental stressors, considering both single and combined exposures, to infer if the simultaneous exposure to both stressors induced a differentiated response. Identification of the most important differentially expressed proteins between conditions revealed marked differences in the response of each species towards single and combined exposures, evidencing species-related differences towards each experimental condition. Moreover, protein alterations observed in the combined exposure (Low pH + As) were substantially different from those observed in single exposures. Identified proteins and their putative biological functions revealed an array of modes of action in each condition. Among the most important, those involved in cellular structure (Actin, Atlastin, Severin, Gelsolin, Coronin) and extracellular matrix modulation (Ependymin, Tight junction ZO-1, Neprilysin) were strongly regulated, although in different exposure conditions and species. Data also revealed differences regarding metabolic modulation capacity (ATP ß, Enolase, Aconitate hydratase) and oxidative stress response (Aldehyde dehydrogenase, Lactoylglutathione, Retinal dehydrogenase) of each species, which also depended on single or combined exposures, illustrating a different response capacity of both oyster species to the presence of multiple stressors. Interestingly, alterations of piRNA abundance in C. angulata suggested genome reconfiguration in response to multiple stressors, likely an important mode of action related to adaptive evolution mechanisms previously unknown to oyster species, which requires further investigation. The present findings provide a deeper insight into the complexity of C. angulata and C. gigas responses to environmental stress at the proteome level, evidencing different capacities to endure abiotic changes, with relevance regarding the ecophysiological fitness of each species and competitive advantages in a changing environment.


Assuntos
Ácidos/toxicidade , Arsênio/toxicidade , Crassostrea/metabolismo , Exposição Ambiental/análise , Proteoma/metabolismo , Água do Mar/química , Animais , Crassostrea/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Proteômica , Especificidade da Espécie , Poluentes Químicos da Água/toxicidade
10.
Mar Pollut Bull ; 122(1-2): 379-391, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28684108

RESUMO

One of the most common plastics in the marine environment is polystyrene (PS) that can be broken down to micro sized particles. Marine organisms are vulnerable to the exposure to microplastics. This study assesses the effects of PS microplastics in tissues of the clam Scrobicularia plana. Clams were exposed to 1mgL-1 (20µm) for 14days, followed by 7days of depuration. A qualitative analysis by infrared spectroscopy in diffuse reflectance mode period detected the presence of microplastics in clam tissues upon exposure, which were not eliminated after depuration. The effects of microplastics were assessed by a battery of biomarkers and results revealed that microplastics induce effects on antioxidant capacity, DNA damage, neurotoxicity and oxidative damage. S. plana is a significant target to assess the environmental risk of PS microplastics.


Assuntos
Bivalves , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos , Dano ao DNA , Estresse Oxidativo , Poliestirenos
11.
Environ Pollut ; 228: 169-178, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28531798

RESUMO

Portmán Bay is a heavily contaminated area resulting from decades of metal mine tailings disposal, and is considered a suitable shallow-water analogue to investigate the potential ecotoxicological impact of deep-sea mining. Resuspension plumes were artificially created by removing the top layer of the mine tailings deposit by bottom trawling. Mussels were deployed at three sites: i) off the mine tailings deposit area; ii) on the mine tailings deposit beyond the influence from the resuspension plumes; iii) under the influence of the artificially generated resuspension plumes. Surface sediment samples were collected at the same sites for metal analysis and ecotoxicity assessment. Metal concentrations and a battery of biomarkers (oxidative stress, metal exposure, biotransformation and oxidative damage) were measured in different mussel tissues. The environmental hazard posed by the resuspension plumes was investigated by a quantitative weight of evidence (WOE) model that integrated all the data. The resuspension of sediments loaded with metal mine tails demonstrated that chemical contaminants were released by trawling subsequently inducing ecotoxicological impact in mussels' health. Considering as sediment quality guidelines (SQGs) those indicated in Spanish action level B for the disposal of dredged material at sea, the WOE model indicates that the hazard is slight off the mine tailings deposit, moderate on the mine tailings deposit without the influence from the resuspension plumes, and major under the influence of the resuspension plumes. Portmán Bay mine tailings deposit is a by-product of sulphide mining, and despite differences in environmental setting, it can reflect the potential ecotoxic effects to marine fauna from the impact of resuspension of plumes created by deep-sea mining of polymetallic sulphides. A similar approach as in this study could be applied in other areas affected by sediment resuspension and for testing future deep-sea mining sites in order to assess the associated environmental hazards.


Assuntos
Monitoramento Ambiental , Mineração , Poluentes Químicos da Água/análise , Animais , Bivalves , Ecotoxicologia , Sedimentos Geológicos/análise , Metais/análise , Medição de Risco
12.
Mar Environ Res ; 129: 76-101, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28487161

RESUMO

With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species' potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains. We report wide variation in recovery rates among taxa, size, and mobility of fauna. While densities and diversities of some taxa can recover to or even exceed pre-disturbance levels, community composition remains affected after decades. The loss of hard substrata or alteration of substrata composition may cause substantial community shifts that persist over geological timescales at mined sites.


Assuntos
Adaptação Fisiológica , Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Mineração , Animais , Ecossistema , Fontes Hidrotermais
13.
Environ Int ; 98: 1-17, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27745949

RESUMO

Despite the wide application of quantum dots (QDs) in electronics, pharmacy and nanomedicine, limited data is available on their environmental health risk. To advance our current understanding of the environmental impact of these engineered nanomaterials, the aim of this review is to give a detailed insight on the existing information concerning the behaviour, transformation and fate of QDs in the aquatic environment, as well as on its mode of action (MoA), ecotoxicity, trophic transfer and biomagnification at various trophic levels (micro-organisms, aquatic invertebrates and vertebrates). Data show that several types of Cd-based QDs, even at low concentrations (

Assuntos
Pontos Quânticos , Poluentes Químicos da Água , Animais , Cadeia Alimentar , Pontos Quânticos/metabolismo , Pontos Quânticos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
14.
Aquat Toxicol ; 169: 10-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26478991

RESUMO

In recent years, Cd-based quantum dots (QDs) have generated interest from the life sciences community due to their potential applications in nanomedicine, biology and electronics. However, these engineered nanomaterials can be released into the marine environment, where their environmental health hazards remain unclear. This study investigated the tissue-specific responses related to alterations in the antioxidant defense system induced by CdTe QDs, in comparison with its dissolved counterpart, using the marine mussel Mytilus galloprovincialis. Mussels were exposed to CdTe QDs and dissolved Cd for 14 days at 10 µgCd L(-1) and biomarkers of oxidative stress [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (total, Se-independent and Se-dependent GPx) and glutathione-S-transferase (GST) activities] were analyzed along with Cd accumulation in the gills and digestive gland of mussels. Results show that both Cd forms changed mussels' antioxidant responses with distinct modes of action (MoA). There were tissue- and time-dependent differences in the biochemical responses to each Cd form, wherein QDs are more pro-oxidant when compared to dissolved Cd. The gills are the main tissue affected by QDs, with effects related to the increase of SOD, GST and GPx activities, while those of dissolved Cd was associated to the increase of CAT activity, Cd accumulation and exposure time. Digestive gland is a main tissue for accumulation of both Cd forms, but changes in antioxidant enzyme activities are smaller than in gills. A multivariate analysis revealed that the antioxidant patterns are tissue dependent, indicating nano-specific effects possibly associated to oxidative stress and changes in redox homeostasis.


Assuntos
Cádmio/toxicidade , Mytilus/efeitos dos fármacos , Pontos Quânticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Cádmio/farmacocinética , Catalase/metabolismo , Sistema Digestório/química , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/enzimologia , Brânquias/química , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Glutationa Peroxidase/metabolismo , Mytilus/química , Mytilus/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética
15.
Mar Environ Res ; 111: 74-88, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26152602

RESUMO

The increasing production and application of engineered nanomaterials (ENMs) in consumer products over the past decade will inevitably lead to their release into aquatic systems and thereby cause the exposure to aquatic organisms, resulting in growing environmental and human health concern. Since bivalves are widely used in the monitoring of aquatic pollution, the aim of this review was to compile and analyse data concerning the ecotoxicity of ENMs using bivalve molluscs. The state of the art regarding the experimental approach, characterization, behaviour, fate, bioaccumulation, tissue and subcellular distribution and mechanisms of toxicity of ENMs in marine and freshwater bivalve molluscs is summarized to achieve a new insight into the mode of action of these nanoparticles in invertebrate organisms. This review shows that the studies about the toxic effects of ENMs in bivalves were conducted mainly with seawater species compared to freshwater ones and that the genus Mytilus is the main taxa used as a model system. There is no standardization of experimental approaches for toxicity testing and reviewed data indicate the need to develop standard protocols for ENMs ecotoxicological testing. In general, the main organ for ENM accumulation is the digestive gland and their cellular fate differs according to nano-specific properties, experimental conditions and bivalve species. Endosomal-lysosomal system and mitochondria are the major cellular targets of ENMs. Metal based ENMs mode of action is related mainly to the dissolution and/or release of the chemical component of the particle inducing immunotoxicity, oxidative stress and cellular injury to proteins, membrane and DNA damage. This review indicates that the aquatic environment is the potential ultimate fate for ENMs and confirms that bivalve molluscs are key model species for monitoring aquatic pollution by ENMs.


Assuntos
Bivalves/efeitos dos fármacos , Nanopartículas/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ecotoxicologia , Mytilus/efeitos dos fármacos
16.
Artigo em Inglês | MEDLINE | ID: mdl-25434602

RESUMO

Fluctuations in the stress level of an organism are expressed in behavioural and molecular changes that can affect its ecology and survival. Our knowledge of thermal adaptations in deep-sea organisms is very limited, and this study investigates the critical thermal maximum (CTmax) and the heat-shock response (HSR) in the deep-sea crab Chaceon affinis commonly found in waters of the North East Atlantic. A mild but significant HSR in C. affinis was noted and one of the lowest CTmax known amongst Crustacea was revealed (27.5 °C at 0.1 MPa; 28.5 °C at 10 MPa). The thermal sensitivity of this species appears to be reduced at in situ pressure (10 MPa), given the slightly higher CTmax and the significant 3-fold induction of stress genes hsp70 form 1 and hsp70 form 2. Although C. affinis deep-sea habitat is characterized by overall low temperature this species appears to have retained its ability to induce a HSR. This capability may be linked with C. affinis' occasional exploitation of warmer and thermally instable hydrothermal vent fields, where it has been found foraging for food.


Assuntos
Braquiúros/fisiologia , Resposta ao Choque Térmico , Adaptação Fisiológica , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Pressão Hidrostática , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
17.
Environ Pollut ; 185: 369-71, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24230462

RESUMO

The advent of industrial activities in the deep sea will inevitably expose deep-sea organisms to potentially toxic compounds. Although international regulations require environmental risk assessment prior to exploitation activities, toxicity tests remain focused on shallow-water model species. Moreover, current tests overlook potential synergies that may arise from the interaction of chemicals with natural stressors, such as the high pressures prevailing in the deep sea. As pressure affects chemical reactions and the physiology of marine organisms, it will certainly affect the toxicity of pollutants arising from the exploitation of deep-sea resources. We emphasize the need for environmental risk assessments based on information generated from ecotoxicological trials that mimic, as close as possible, the deep-sea environment, with emphasis to a key environmental factor - high hydrostatic pressure.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Pressão , Poluentes Químicos da Água/toxicidade , Animais , Ecotoxicologia , Recursos em Saúde , Oceanos e Mares , Medição de Risco , Testes de Toxicidade , Poluentes Químicos da Água/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-22537881

RESUMO

We investigated the tolerance of adult specimens of the shallow-water shrimp Palaemonetes varians to sustained high hydrostatic pressure (10 MPa) across its thermal tolerance window (from 5 to 27 °C) using both behavioural (survival and activity) and molecular (hsp70 gene expression) approaches. To our knowledge, this paper reports the longest elevated hydrostatic pressure exposures ever performed on a shallow-water marine organism. Behavioural analysis showed a 100% survival rate of P. varians after 7 days at 10 MPa and 5 or 10 °C, whilst cannibalism was observed at elevated temperature (27 °C), suggesting no impairment of specific dynamic action. A significant interaction of pressure and temperature was observed for both behavioural and molecular responses. Elevated pressure was found to exacerbate the effect of temperature on the behaviour of the animals by reducing activity at low temperature and by increasing activity at high temperature. In contrast, only high pressure combined with low temperature increased the expression of hsp70 genes. We suggest that the impressive tolerance of P. varians to sustained elevated pressure may reflect the physiological capability of an ancestral species to colonise the deep sea. Our results also support the hypothesis that deep-sea colonisation may have occurred during geological periods of time when the oceanic water column was warm and vertically homogenous.


Assuntos
Pressão Hidrostática , Palaemonidae/fisiologia , Estresse Fisiológico , Aclimatação/genética , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Comportamento Animal , Canibalismo , Ecossistema , Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Oceanos e Mares , Palaemonidae/metabolismo , Temperatura
19.
Proc Biol Sci ; 276(1657): 717-26, 2009 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18986970

RESUMO

Early ontogenetic adaptations reflect the evolutionary history of a species. To understand the evolution of the deep-sea fauna and its adaptation to high pressure, it is important to know the effects of pressure on their shallow-water relatives. In this study we analyse the temperature and pressure tolerances of early life-history stages of the shallow-water species Mytilus edulis. This species expresses a close phylogenetic relationship with hydrothermal-vent mussels of the subfamily Bathymodiolinae. Tolerances to pressure and temperature are defined in terms of fertilization success and embryo developmental rates in laboratory-based experiments. In M. edulis, successful fertilization under pressure is possible up to 500 atm (50.66 MPa), at 10, 15 and 20 degrees C. A slower embryonic development is observed with decreasing temperature and with increasing pressure; principally, pressure narrows the physiological tolerance window in different ontogenetic stages of M. edulis, and slows down metabolism. This study provides important clues on possible evolutionary pathways of hydrothermal vent and cold-seep bivalve species and their shallow-water relatives. Evolution and speciation patterns of species derive mostly from their ability to adapt to variable environmental conditions, within environmental constraints, which promote morphological and genetic variability, often differently for each life-history stage. The present results support the view that a direct colonization of deep-water hydrothermal vent environments by a cold eurythermal shallow-water ancestor is indeed a possible scenario for the Mytilinae, challenging previous hypothesis of a wood/bone to seep/vent colonization pathway.


Assuntos
Adaptação Fisiológica , Mytilus edulis/embriologia , Pressão , Animais , Pressão Atmosférica , Embrião não Mamífero , Desenvolvimento Embrionário , Especiação Genética , Larva/crescimento & desenvolvimento , Mytilidae/embriologia , Mytilidae/genética , Mytilidae/crescimento & desenvolvimento , Mytilus edulis/genética , Mytilus edulis/crescimento & desenvolvimento , Filogenia , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...